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THE MASSLESS LIMIT
OF BARGMANN-WIGNER EQUATIONS
FOR A MASSIVE GRAVITON

Information about the discovery of gravity waves attract attention to the graviton’s mass prob-
lem. The massive graviton is a spin-2 particle with a non-zero mass. In this work, relativistic
wave equations for a massive graviton have been studied in the limiting case of zero particle
mass. The equations for the non-zero-mass graviton are based on the Bargmann—Wigner equa-
tions in the five-dimensional space-time with the (++++—) signature. In the massless limit of
massive graviton, all states with possible helicity values — 0 (LL-graviton), +1 (TL-graviton),
and £2 (TT-graviton) — are preserved.
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1. Introduction

Observations of gravity waves in 2015-2017 attracted
attention to the old issue about graviton’s mass,
i.e. to the problem of a massive graviton [1, 2]. The
massive graviton is a hypothetical particle with a spin
of 2, whose mass m is evaluated to be less than 10722~
10732 eV. The aim of this study is to consider the
massive graviton as a massless particle in the five-
dimensional space-time and to demonstrate that all
five states of its helicity polarization survive in the
massless limit in the Minkowski space-time. This re-
sult contradicts the conventional viewpoint [3].

2. The Landau—Peierls

Wave Equations for Light Quanta
and the Bronshtein Equations

for Gravitational Quanta

In 1930, L. Landau and R. Peierls were the first who
considered the issue about the wave function of a
light quantum. At the beginning of their work [4],
L. Landau and R. Peierls reasonably assumed that
the light quantum had to be described by Maxwell’s
equations in vacuum (hereafter, we adopt that ¢ =
h=1)
¢ = rotf,

dive =0, (1)
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$H = —rot€¢, divH=0. (2)

According to Landau and Peierls, the vectors € and
$ in Egs. (1) and (2) are complex-valued quantities.

Landau and Peierls imposed additional restrictions
on ¢ and $, which excluded the solutions of Egs. (1)
and (2) with negative energies. Denoting the photon
“wave function” as § = € (or § = ), the cited au-
thors wrote the following “wave equations” for the
“wave function” §:

3’ = 7\/K8’7 (3)
div3 =0, (4)

where v/A is the integro-differential operator

1 (y)
VAE(x) = %QZ_A/ P y|2d y. (5)

Equations (3) and (4) has a plane-wave solution

%v _ ei(kxfwt)fv (6)

in which
w = k|, (7)
(kf) = 0. (8)

Equation (7) differs from the consequences of
Maxwell’s equations (1) and (2). Namely,

w = +|k|. (9)
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In due course, it became clear that it is Maxwell’s
equations (1) and (2) with the complex € and ) that
are the wave equations for light quanta (photons).

In order to elucidate the physical quantum-
mechanical content of Maxwell’s equations as the
wave equations for photons, it is expedient to in-
troduce six complex-valued quantities, the Riemann—
Silberstein vectors 1, and v [5-7|, instead of six
complex-valued quantities & and $3:

Yy =€ L1, (10)

Then Maxwell’s equations (1) and (2) read

igw = troty (11)
ot + = £

divypy = 0. (12)

The change from the vectors € and $) to the vectors
1, and 4 has the following advantages.

1. Maxwell’s equations are transformed into two in-
dependent pairs of equations for two functions, 1),
and v _.

2. When subjected to the transformations of the
proper Lorentz group, the functions ; and _
are transformed quite simply and independently of
each other. For instance, when changing to a refer-
ence frame that moves relatively to another reference
frame with a velocity v, the new functions look like

— wi + i[V71/’i]
Vi=vZ

3. Equation (11) has the form of Schrédinger’s
equation

Yl (13)

.0
it = HY (14)
with the Hamiltonian H = +rot.

4. The physical meaning of the Hamiltonian H =
= +rot is as follows: H = +(sp), where s is the
photon spin operator, (s;)g = —igir; p is the pho-
ton momentum operator, p; = fz'a%; and &;; is the
completely antisymmetric Levi-Civita unit symbol,
€123 = L.

Thus, if photons have certain energies and mo-
menta, Egs. (11) describe photons with the right (R
or +) and left (L or —) helicities.

As was elucidated in work [8], the Weyl equations
[9] for a massless neutrino (s = ), Maxwell’s wave
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equations for a photon (s = 1), and the Bronshtein
wave equations [10]| for a graviton (s = 2) have the
same group-theoretic nature, and the corresponding
Hamiltonians look like H = +1(sp) (for more details,
see works [11-15]).

In the work by M.P. Bronshtein [10], the equations
for weak gravitational waves were presented in a form
that made obvious their relation to Maxwell ones. In
particular, Maxwell’s equations (1), (2) can be writ-
ten as follows:

0 0 0

S P =cimg—H, Z-E =0,

ot Skl oxy, ! ox;

2 ) 2 (15)
=Hi=—em—FE, —H;=0.

ot Mol B 0

Einstein’s equations for weak gravitational waves in
the Bronshtein form look like

0 0 0

B, = e, -—E, =

ot Ezklaxk ljs O ij 0, (16)
0 0 0

78tHZ = —Eikliaxk Elja 781‘1' H” = 0,

where E;; and H;; are symmetric traceless tensors 1

1

Eij = Raja; = Zgiklgjmanlmm
) )

H;; = §5imnR4jmn = §€imann4j7

(17)

and R, - is the Einstein curvature tensor.

In his work [10], M.P. Bronshtein did not introduce
the notions “graviton” and “wave function of a gravita-
tional quantum”. He considered the complex tensors
E;; and H;; as solutions of Eqgs. (16). Those solutions
are nothing else but the wave functions of gravitons,
and Egs. (16) are the corresponding wave equations.

3. Wave Equations for Photons
and Gravitons in the Spinor Form

In 1929, on P. Ehrenfest’s request, B.L. van der
Waerden developed the spinor analysis [16]. In 1931,
O. Laporte and G.E. Uhlenbeck for the first time

I To verify the symmetry of the right-hand side of Eqgs. (16)
with respect to the subscripts i and j, let us consider the dif-
ference Eikl%Hlj - sjkl%H“. Using property (17) and
the relation €;x1€mni = 0imOkn — 9indkm, one can demon-
strate that this difference equals zero. Therefore, the tensor
is symmetric with respect to the permutation i <> j. The
symmetry of the other tensor is proved analogously.
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considered Maxwell’s equations in the spinor form
[17]. They recalled about the Riemann-Silberstein
vector and used it in their work (both Riemann
and Silberstein used only one vector, $ — i€). Using
the Riemann-Silberstein vectors (10), we can write
Egs. (11) and (12) in the form

0 0
(atf + 0’0X> Y =0,

where 1(4) is the 2 x 2-matrix (¢¥4))S = (Y10)2,
and (o)? are the standard Pauli matrices. Equations
(11) and (12) can be obtained from Egs. (18) and the
following formula for the product of Pauli matrices:

(18)

o0 = 01 + g0, (19)

Instead of 10 complex variables E;; and Hjj, let
us introduce 10 complex variables (analogs of the
Riemann-Silberstein vectors)

w(i)ij = Eij +ilij, (20)
and define the spin tensor

V&) agys = V() 5;(0)as(05)s, (21)
where (0;)ap = (0:)leyp are symmetric matrices,

ie. (0i)ap = (0i)ga, and €45 is the completely an-
tisymmetric Levi—-Civita unit symbol, €15 = 1. It can
be shown that the spin tensor (21) is completely sym-
metric.

In the spinor form, the Weyl equations look like

0 0\’
(atl + Uax>a w(i)n = O, (22)
Maxwell’s equations like

0 0\
and the Bronshtein equations like

0 a1\’

The spinor forms of those equations convincingly
demonstrate that the latter are related to one an-
other.
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Formulas (22) to (24) are relativistic wave equa-
tions in the non-relativistic notation. Their relativis-
tic invariance is not evident, and this is their short-
coming. In the notation introduced by van der Waer-
den (ordinary and dotted spinor indices), they acquire
the following forms:

* Egs. (22):

)da

1/J(—)a($) = Oa

(00)*" 75—
ol (25)

9
(U#)adai%¢(+)(x) = 07

e Egs. (23):

.0
(U;t)aaai%"/)(f)aﬂ(x) =Y, 26)
. 26

9 4
(O’M)adaixp‘w(f)(,f) = Oa

e and Eqgs. (24):

9
Ox,,

(O—#)da d)(—)aﬁ'\/&(x) =0,

. (27)
o A

(Uu)adaTQ/J?f)’Yé(x) =0,
7

where the matrices (0,)% and (0,,)aqs are defined as
follows:
(0,)%" = (0,iI), (0u)aa = (0. —1I). (28)
Equations (25) to (27) can be written in a more
compact form, if we change from two-component
spinors to four-component Dirac bispinors. In this
case, when considering, e.g., a photon, it is expe-
dient to return back from the Riemann—Silberstein
vectors to the complex-valued Landau—Peierls vectors
¢ = E and $ = H, as well as to the four-dimensional
antisymmetric complex electromagnetic field tensor
F, (z) = —F,,(z) = (E(z),H(z)), and to consider
the latter as the wave function of a photon. In the
spinor notation, the both pairs of Maxwell’s equa-
tions

Frvw =0, Fup+Foppu+ Fopp =0 (29)

read

(V)2 Fpo i (4p70)% = 0, 1. YuFpoupYo =0, (30)
ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 7
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where 7, are the Dirac matrices. At the same time,
for a massless notoph [18] F),(z) = (F(z), iFo(x)), the
wave equations

Fup=0, F.,,—F,,=0, (31)
acquire the form 2
('Yu)ng,u(’Yp)g =0, ie Y. F,uv,=0. (32)

4. Three Variants of Proca
Equations. Photon and Notoph

The relativistic wave equations for a massive spin-1
particle (the Proca equations) can be written in three
(at m # 0) forms [22]:

F, = m2F,, (33)
Fo,—F,,=Fu, (34)
W = [E]> + [H]? + m*(|F|* + | Fo[?), (35)

where W is the energy density. Proca considered his
equations to be more suitable than the Dirac equa-
tions for the description of an electron.

The Proca equations and the positive energy den-
sity can also be written in the form [23]

F‘;J,u,y = F/m (36)
EF,,—F,,=m%F,,. (37)
W =m?*(|E[* + [H?) + [F|* + |Fo[*. (38)

In a certain sense, Eqgs. (33)—(35) are symmetric to
Eqgs. (36)—(38): in the massless limit, we lose the
notoph in the former case, and the photon in the
latter. If Egs. (33)—(35) describe a “massive photon”,
then Egs. (36)—(38) describe a “massive notoph”. In
work [23], the both indicated variants of Proca equa-
tions were analyzed in detail, by using the Bargmann—
Wigner equations [24].

The third variant of the Proca equations was used
in the work by Bass and Schrédinger [25]. In the
massless limit of those equations, both a photon and
a notoph “survive”:

F}Lv,y = mF}La
Fu,—

(39)

Fyu=mF,,. (40)

2 For more about the spinor analysis and the application of
spinors to the theory of relativistic wave equations and to
the general theory of relativity, see works [19-21].
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W = [E* + [H] + |[F|* + |Fy|*. (41)

In Egs. (39)-(41), F,,, and F,, have the same dimen-
sion, because they both are equitable components of
the same multicomponent wave function. The third
variant of the Proca equations can be simply general-
ized to the case of five-dimensional space-time, which
will be used in this work. It should be noted that the
five-dimensional description of photons and gravitons
was used for the first time by J.K. Lubaiiski in 1942 in
the theory of relativistic equations for particles with
an arbitrary spin [26]. The fifth additional space-like
coordinate is quite equitable with three other space-
like coordinates. This five-dimensionality is much
simpler, and it is not related to the five-dimensional
theories by T. Kaluza [27] and O. Klein [28].

5. Bargmann—Wigner Equations
for a Massive Graviton

Let us firstly consider an ordinary massive non-
relativistic particle of spin 2. Hence, we assume that
the wave function of a massive graviton is a com-
pletely symmetric spin-tensor of rank 4,

Pabed = @abcd(xy t) (42)

As was proved by E. Majorana in 1928 [29], an ar-
bitrary wave function (42) can always be represented
in the form

(1), (2)

Pabed = A{(pa Pp ® (4)}7

(pc (,Od (43)

where A is a constant, the notation {...} means a

complete symmetrization over all indices, and gat(f) are
certain two-component spinors3. When changing to
the relativistic theory, if the spin equals %, the non-
relativistic spinor ¢,(a = 1,2) has to be substituted
by the 4-component Dirac bispinor ¢, (o = 1,2,3,4),
which satisfies the Dirac equations

o B
g+ m) s(o) =0 (44)
( 8x# a
where x, = (x,it) is the space-time coordinate of
the particle, and m the particle mass. It is quite rea-
sonable to replace all four non-relativistic spinors in

3 The Majorana theorem was rediscovered by R. Penrose in
1960 [30] and used to analyze the algebraic properties of
the curvature tensor in the general theory of relativity,
when classifying the types of gravitational fields according
to Petrov [31].
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Eq. (43) by the Dirac bispinors and to assume that
the wave function of a massive graviton looks like

Yaprs(z) = ALy T ey

The wave function (45) evidently satisfies the
Bargmann-Wigner equations [24]

(45)

o A
(g +m) rposta) =0 (16

Since the spin tensor 1,pys is completely symmet-
ric, there is no difference, on which of the indices the

matrix (’yH% + m) acts.
Iz
6. Five-Dimensional Bargmann—Wigner

Equations for a Massive Graviton

The Dirac equations (44) can be expressed in the
five-dimensional form. First, Egs. (44) are multiplied

by ivs,
) 0 .
(1757”83: + zm'y5) = 0. (47)
"

Then a fifth coordinate X5, a new wave function

Uz, X5) = e ¥ o(x), (48)
and new matrices I'y (A =1,2,3,4,5), namely,
F[l, = i757/u s = V5, (49)

are introduced.

Five coordinates (X, = x,, X5) will be denoted by
the capital letter X. Then the Dirac equation for the
wave function (48) can be written as

0

By performing an analogous procedure with Eq. (46),
the latter can be rewritten in the form

(50)

0
(L) 2 ¥apys(X) =0.

X4 (51)

7. Five-Dimensional Bargmann—Wigner
Equations for a Massive Graviton
in the Tensor Form

Let us first consider the case of massive photon. Ana-
logously to Eq. (45), we assume that the wave func-
tion of a massive photon is a completely symmetric
tensor of rank 2

VYas(x) = A{p P},
588

(52)

where A is a constant. It is evident that this wave
function satisfies the Bargmann—Wigner equation

P A
(’YIL% + m)a 1/))\5@) =0. (53)
In the five-dimensional space X4 = (X, = z,, X5),
the wave function

Uop(X) = e™X50h,5(2) (54)

satisfies the following equation, which is similar to
Eq. (51):

O (X =0,

X4 (55)

Let us introduce the infinitesimal operators (S4g)? of
the generalized Lorentz group SO(4,1). They act on
the Dirac bispinors in the five-dimensional space with
five coordinates X 4 and the invariant form X 4 X 4:

I'yT'p —T'gll
Sap = W' (56)
7
Let us consider new matrices
(Sap)™ = (C™H)*(SaB)s, (57)

where C' is the antisymmetric matrix of the charge
conjugation, Co3 = —Cjg,. Ten matrices (Sap)*? are
characterized by the following important symmetry
properties:

(Sap)*® = —(Spa)™® = (Sap)~.

Let us introduce the tensor wave function of a massive
photon,

(58)

4p(X) = —Ppa(X) = (Sap)* Vap(X). (59)

It is easy to be convinced that the wave function (59)
satisfies the equations

®ap.p =0, (60)
Pap.c+ Ppca+ Poas =0, (61)
where the comma means a partial derivative,

: _ 0
1.€. (b,A = m@
Let us introduce a wave function in the Minkowski
space Fap(x),
D ap(X) =™ Fup(z), (62)

ISSN 2071-0194. Ukr. J. Phys. 2018. Vol. 63, No. 7
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and the notation
Fos() = iF (a).

For the functions F),, and F),, Egs. (60) and (61) are
transformed into the Proca equations (39) and (40),
respectively, for a massive particle with spin 1,

(63)

Fu,=mFE,, (64)
Fupw—=Fypu=mFy. (65)
In notations (62)—(64), Eq. (61) takes the form
Fuvp+ Fopu+ Fppw =0, (66)
and Eq. (60) becomes

F,,.=0. (67)

The massless limit of the Proca equations (64) and
(65) was first analyzed by Bass and Schrodinger in
1955 [25]. If m = 0, Egs. (64)—(67) give rise to the
following expressions:

F;Lu,y =0,

F,,=0,

Fuvp+ Fopp+ Fopp =0,
F#’V_Fu,u = 0.

Equations (68) are ordinary Maxwell’s equations
for the complex fields Fj,,(x), i.e. the wave equa-
tions for photons (7-photons, according to work
[25]). Equations (69) correspond to particles that
were called L-photons in work [25] and, later, “no-
tophs” in work [18]. From Eq. (69), it follows that

F, = 99

1% 5':@7 ¢ ’

(70)
i.e. the L-photon (or the notoph) is an ordinary mass-
less scalar particle. Thus, one can see that, in the case
of massive photon, which has three polarization de-
grees, all three states survive at m — 0, in contrast
to the fault conclusion made by Wigner [3]*.

Analogously to Eq. (59), the tensor wave function
of a massive graviton looks like

Gapop(X) = 832800 W, p5(X). (71)

4 Namely, according to Wigner, only maximum spin projec-
tions on the particle motion direction survive in the mass-
less limit m — 0. In the general case of spin S, these are the
projections S and —S.
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It is clear that

Gapep(X)=—Gpacp(X) = —Gappc(X) =
= Gepap(X).

From the generalized Pauli-Fierz relations [32], it fol-
lows that

Gapcp(X) =0,

(72)

(73)

eapcpEGapep(X) = 0. (74)

At the same time, it follows from the Bargmann—
Wigner equations (51) that the new wave function
satisfies the equations

Gapcep,p(X) =0,
Gapcep.e +Gaspe,c + Gapec,p = 0.

Those equations are not independent: the former can
be obtained from the latter by applying the contrac-
tion operation over two indices. Let us verify that
the symmetry properties of the tensor Gapcp re-
strict the number of its components to the same value
as the symmetry properties of the wave function in
the Bargmann-Wigner form W,g,s do, which is a
completely symmetric 4-rank spin-tensor in the 4-
dimensional spinor space. The number of components
of a completely symmetric n-th rank tensor in an m-
dimensional space can be found by the formula

(n+m—1)!

N:
nl(m—1)"

(77)
which gives NV = 35 in our case. At the same time, re-
lations (72) restrict the number of the tensor Gapcp
components to 10 x (10 + 1)/2 = 55. But 15 equa-
tions (73) and 5 equations (74) reduce their total
number to N = 55 — 15 — 5 = 35. Thus, the num-
ber of components in the wave functions ¥,g+5 and
G apcp coincide.

One can see that the symmetric properties of the
graviton wave function (71) as a tensor are identical
to the property of the linearized Weyl tensor [33] in
the 5-dimensional space.

8. Generalized Proca
Equations for a Massive Graviton

Using Eq. (73), the tensor function of a massive gravi-
ton can be presented in the four-dimensional form:

(78)
589
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G5upa = inOVv (79)
G5p,51/ = H,u,l/ = _R,u,lu (80)
R, =R=0. (81)

Substituting these properties into Egs. (73)—(76), we
obtain the following expressions:

Ruvpor + Ruvor,p + Ruvrp,e =0, (82)
Hyox—Hyyo =mHgy,. (83)
From Egs. (75), it follows that

Ruvpoo = —mHp,. (84)
Equation

Hyvpo — Huvop = —mRywpo (85)
gives rise to the equality

Hyov,o = —mH,,. (86)
From Eq. (76), it also follows that

Hyou )\ + Hoxpp + Hyppo = 0. (87)

In the four-dimensional notation, the following im-
portant relation can be obtained from Eq. (75):

H,,, =0. (88)
Let us consider Egs. (78)—(88) for a massive gravi-
ton in the massless limit. At m = 0, Eqgs. (83) become

Hua,)\ - Hu)\,o = 0. (89)
Hence, the tensor H,, turns out a second-order
derivative of a scalar function:

9?¢

H,, = .
02,02,

(90)
Following the work by Bass and Schrédinger, let us
call the particles that correspond to those equations
as LL-gravitons. Let us write the previous expressions
in the zero-mass case. Equations (82), (87), and (88)
remain unchanged. Equations (84), (85), and (86) are
transformed into the equations

R;J,Vpa,o’ =0, (91)
Hp.l/p,a' - H;wa,p =0, (92)
Hpau,a =0, (93)
590

Three symmetry relations remain:

Hpoa = 07 (94)
Hywp+ Hypp+ Hppw = 0, (95)
Rul/pa + RMPO’V + R/,L(TVp = 0. (96)

By considering Egs. (92), (94), and (95) in more de-
tails, the following expressions can be obtained:

_ Ofuw
Ofuw
=0, (98)
ox,
Ofuw | Ofvp | Ofpu
o, + oz, + Oz, =0. (99)

Again following work [25], the particle that satisfies
those equations will be called as TL-graviton.
Equations (81), (91), and (86) bring us to the
Bronshtein equations [10], which describe particles
with a helicity of +2, i.e. TT-gravitons. It should
be noted that the helicity of a superposition of the
left and right gravitons can be an arbitrary real
number within an interval of [—2,42], including
zero. The zero case is an analog of the linear pho-
ton polarization. The gravitational waves that were
registered in 20152017 were composed of gravitons
of this type. This remark is also applicable to TL-
gravitons. Note also that, in the case of Einstein’s
equations, the components of the tensor R,,,, are
real-valued numbers. But, in the case of Bronshtein
equations, they are complex numbers, because the
tensor R, - is the wave function of a graviton.

9. Conclusions

By reducing the Bargmann-Wigner equations for
a massless graviton in the 5-dimensional space, we
have obtained a system of wave equations, which de-
scribes the dynamics of a massive graviton in the
4-dimensional space. In the zero-mass limit, those
equations transform into the Klein-Gordon equations
for the wave function of a massless scalar particle,
Maxwell’s equations for particles with helicities +1
and —1 in vacuum , and the Bronshtein equation
for gravitons with helicities 42 and —2. The obtained
equations generalize the Proca equations in the Bass
and Schrodinger formulation onto the spin-2 case and
prove the possibility of preserving all 5 helicity po-
larization states of a massive particle with spin 2 in
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the massless limit. By analogy with the work by Bass
and Schrédinger, particles with those states are called
LL-gravitons (helicity 0), TL-gravitons (helicity £1),
and TT-gravitons (helicity +2). It was TT-gravitons
that were described by M. Bronshtein for the first
time [10].
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Translated from Ukrainian by O.I. Voitenko

A.B. I'paducvruti, FO.II. Cmenanoscoruti

BE3MACOBA I'PAHUIIA PIBHAHDb
BAPI'MAHA-BII'HEPA J1J151 MACHBHOI'O I'PABITOHA

Peszmowme

JaHi npo BiZKpUTTS rpaBiTaIilHUX XBUJIb IIPUBEPHYJIH yBary
10 IIUTaHHs ICHYBaHHS MacCy y IPaBiTOHIB, TOOTO 10 NMUTAHHS
MaCHUBHOI'O I'paBiToHa. MacuBHUil rpaBiTOH — i€ YaCTHUHKa 3i
CIIIHOM 2 Ta HEHYJIBOBOI Macol0. MeTorw poboTu € [OoCiIiiKe-
HHSI TPAHUIl PEJISATUBICTCBKUX XBUJILOBUX DIBHSIHb MaCHUBHO-
ro rpaBiTOHa JJIsI BUIIQJIKy HYJIbOBOI MaCH YACTHUHKHU. PiBHsH-
Hsl JJIsl TPaBiTOHA HEHYJIBOBOI Macu 0a3yOThbCsS Ha PIBHSIHHSAX
Baprmana—Biruepa y n’stuBuMipHOMy TpocTopi-daci i3 curaa-
Typoio (++ ++ —). BeamacoBa rpanuig MacuBHOTrO TpaBiTOHA
30epirae yci moxkyuBi cranu nosspusanii. i cranu Binmosin-
arors LL-rpasitony (cmipanshicts 0), TL-rpasitony (cmipass-
micts +1) Ta TT-rpasitony (cnipasasaicts +2).
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