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THE NEW MECHANISM
OF FOCUSING AND ENHANCING
ACOUSTIC WAVES GENERATED BY METAL
NANOPARTICLES WITHIN THE CRYSTAL LATTICE

We will discuss a possible mechanism for the focusing and enhancement of acoustic waves
generated by metal nanoparticles embedded in a crystal lattice under ultrashort laser excita-
tion. In contrast to continuous-medium models, the discrete lattice framework naturally gives
rise to oscillatory wave tails appearing behind the propagating front. These tails arise from
the breakdown of Huygens principle in even-dimensional spaces. The atomic dynamics can be
interpreted as evolving within a six-dimensional configuration space, where the continuous sub-
space represents intra-cell displacements and the discrete indices correspond to the positions of
unit cells. This effect can lead to a local enhancement of longitudinal acoustic wave amplitudes
at specific lattice sites without any increase in the driving laser pulse intensity.
K e yw o r d s: nanoparticles, generating and focusing acoustic waves, Huygens principle.

1. Introduction
Metal nanoparticles embedded in dielectric crystals
and excited by ultrashort laser pulses have attracted
considerable attention as potential localized sources
of coherent acoustic waves. The interaction of such
waves with the host lattice is of interest for nanoscale
energy localization, ultrafast signal processing, and
the design of functional acoustic metamaterials.

In continuous media, the wave propagation in odd-
dimensional spaces is usually associated with Huy-
gens principle, whereby disturbances remain con-
fined to a propagating front with no trailing oscil-
lations. However, experimental and theoretical indi-
cations suggest that, in real crystals with discrete
atomic structures, long-lived oscillatory wave tails
may persist behind the main pulse. This points to
a fundamental difference from the predictions of con-
tinuum models and suggests the need in a refined the-
oretical description.
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One possible explanation lies in the hybrid discrete-
continuous nature of crystal lattices. Atomic motion
can be viewed as taking place in a configuration space
of the form R3 × Z3, where the continuous part rep-
resents intra-cell displacements and the discrete in-
dices correspond to the positions of unit cells. Such a
fibered description modifies propagation characteris-
tics and can help one to account for the observed de-
partures from Huygens principle. In this framework,
the resulting oscillatory wave tails open up the pos-
sibility of focusing the acoustic energy through phase
control over the multiple nanoparticle sources, poten-
tially without increasing the laser pulse intensity.

The following sections outline a mathematical
model for discrete lattice dynamics, discuss how this
focusing effect may emerge, and consider implications
for the energy control at the nanoscale. Connections
with earlier approaches to discrete wave equations,
hybrid configuration spaces, and the Bateman’s for-
malism for oscillatory solutions are also noted.

Consider a spherical metal nanoparticle (NP) em-
bedded in the surrounding matter (SM). A laser im-
pulse acting on the nanoparticle (NP) can increase
the electronic subsystem’s temperature, and the sub-
system can expand abruptly, generating sound waves
in the surrounding medium (SM). The mechanism for
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generating longitudinal acoustic waves through the
pressure of the hot electron gas in metal nanoparti-
cles was proposed by P. Tomchuk [1]

Δ𝑝𝑒 = 𝑝0
5𝜋2

12

(︂
𝑘B𝑇𝑒
𝜀𝐹

)︂2
. (1)

As a boundary condition, the governing equation
imposes equality between the additional pressure of
the hot electron gas and the surface energy of the
nanoparticle (NP)

Δ𝑝𝑒 (𝑡) =
2𝜌𝑠
𝑎2

𝜉 (𝑡), (2)

The density of the nanoparticle (NP) surface energy
is denoted by 𝜌𝑠, 𝑎 represents the particle radius, and
𝜉 is the radial displacement of the surface. The elec-
tronic temperature setting time is

𝜏𝑒 ∼ 10−12𝑠. (3)

The time required for the electron temperature to
equalize with the lattice temperature in a bulk
metal is

𝜏𝑒−𝑝ℎ ∼ 10−10𝑠. (4)

Temporal pulsations of the nanoparticle’s electronic
temperature induce pressure oscillations in the sur-
rounding dielectric, generating acoustic waves. The
propagation of a longitudinal wave in the continuous
approximation is described by the equation:

∇2u− 1

𝑠2𝑙

𝜕2u

𝜕𝑡2
= 0, (5)

where u is displacement vector. For a longitudinal
wave, a scalar potential 𝜓 can be introduced such
that

u , ∇𝜓, (6)

where 𝜓 is the solution of the equation

∇2𝜓 − 1

𝑠2𝑙

𝜕2𝜓

𝜕𝑡2
= 0, (7)

subject to the boundary condition

𝜕𝜓

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑎

=
𝑎2

2𝜌𝑠
Δ𝑝𝑒 (𝑡). (8)

In this model of nanoparticle (NP) excitation, a longi-
tudinal acoustic wave is generated in the matrix and

oscillates at the NP’s characteristic frequency. The
solution to the corresponding Cauchy problem is:

𝜓 = −𝑠𝑙 𝑎
𝑟

exp

{︂
−𝑠𝑙
𝑎

[︂
𝑡− 𝑟 − 𝑎

𝑠𝑙

]︂}︂
×

×

𝑡− 𝑟−𝑎
𝑠𝑙∫︁

−∞

exp

(︂
𝑠𝑙
𝑡1
𝑎

)︂
𝜉 (𝑡1) 𝑑𝑡1. (9)

It is assumed that the oscillation begins at a spec-
ified initial time. The objective of this study is to
determine the conditions under which an acoustic
wave, generated by a nanoparticle (NP) in a solid
matrix under the laser irradiation, can be focused
and amplified. Solution (9) is inadequate for our pur-
poses for two reasons. First, the continuum approxi-
mation must be transcended when analyzing acous-
tic wave propagation. Second, the excitation regime
must be reconsidered from an alternative perspec-
tive – specifically, one in which excitation is driven
by precisely timed femtosecond laser pulses. The jus-
tification for these conditions will be provided in sub-
sequent sections.

The generation of acoustic waves by ultrashort
laser pulses involves the rapid expansion of the
Fermi gas within NPs on picosecond-to-femtosecond
timescales. This expansion exerts pressure on the sur-
rounding matrix atoms; consequently, the resulting
sharp pressure pulse originating from the NP can be
treated as an additional force acting on a free atom.

Huygens principle states that an initial state with
sharply defined spatial localization later manifests at
another location as an effect equally confined in space
and time. Notably, this principle holds only in spaces
of odd dimensionality. As will be shown, adherence to
Huygens principle precludes the construction of the
acoustic-wave focusing scheme proposed here.

This limitation changes fundamentally when the
continuum approximation for the matrix-atom mo-
tion is abandoned. In other words, rather than using
wave equation (7), which ignores the discrete nature
of the atomic motion, one must revert to the equation
governing the dynamics on a discrete lattice.

2. Generation of Acoustic
Waves by Ultrashort Laser Pulses
and the Breakdown of Huygens
Principle in Lattice Systems

The generation of acoustic waves by ultrashort laser
pulses involves the rapid expansion of the Fermi
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electron gas within nanoparticles (NPs), occurring
on femtosecond-to-picosecond timescales. This ex-
pansion generates transient electric fields that exert
a pressure on the surrounding matrix atoms. The re-
sulting sharp pressure pulse can be treated as an ad-
ditional force acting on a free atom, initiating lattice
vibrations and acoustic wave propagation.

To accurately describe this process, we must con-
sider the structure and dynamics of the crystal on the
atomic scale. The system of atoms in the crystal – ac-
counting for both their discrete lattice positions and
their three-dimensional displacements – is naturally
described within the space

ℒ = {(𝑎, 𝑏, 𝑐) ∈ Z3, u𝑎,𝑏,𝑐 ∈ R3}, (10)

where (𝑎, 𝑏, 𝑐) label discrete atomic sites and u𝑎,𝑏,𝑐 de-
note the physical displacement vectors of these atoms
in the ordinary Euclidean space R3. This space is not
six-dimensional in any physical sense; rather, it is
a structured representation that separates the dis-
crete geometry of the crystal lattice from the three-
dimensional kinematics of atomic motion.

Introducing the lattice–displacement space is not
an approximation, but a refinement of the physi-
cal description. Unlike the continuum wave equation
in R3, which smooths out atomic discreteness and
thereby enforces Huygens principle (i.e., sharp prop-
agation of wavefronts), the discrete formulation in-
herently introduces dispersion and scattering effects,
breaking Huygens principle. This breakdown permits
propagation regimes – including controllable focusing
of lattice waves – that cannot occur in a purely con-
tinuum model.

In a continuum setting, an initially localized distur-
bance propagates strictly on the surface of the light
(or sound) cone, without internal trailing oscillations,
if and only if the space dimension is odd. By contrast,
in a discrete lattice, each atomic site obeys Newto-
nian equations of motion coupled to its neighbors,
producing frequency-dependent group velocities and
internal reflections. This dispersion eliminates the ex-
act causal sharpness predicted by the continuum wave
equation, thereby invalidating Huygens principle on
the lattice scale.

Thus, the lattice–displacement space does not in-
troduce artificial dimensions but instead preserves the
true microscopic dynamics that the continuum ap-
proximation necessarily discards. As will be demon-

strated, this discrete framework enables wave manip-
ulation strategies – such as the acoustic focusing –
that are inaccessible under the constraints imposed
by Huygens principle in the continuum model.

3. The Equation of Motion
of an Atom in a Three-Dimensional
Crystal Lattice

Let us consider the classical equation of motion for
an atom in a three-dimensional crystal lattice with re-
gard for the interaction with the nearest atoms within
the harmonic approximation [2]. For simplicity, we
assume an infinite simple-cubic, isotropic, nearest-
neighbor harmonic lattice. The equation of motion
then reads

𝑑2u(𝑡)𝑎,𝑏,𝑐
𝑑𝑡2

= 𝑘2 ·
{︁
u(𝑡)𝑎+1,𝑏,𝑐 + u(𝑡)𝑎−1,𝑏,𝑐 +

+u(𝑡)𝑎,𝑏+1,𝑐+u(𝑡)𝑎,𝑏−1,𝑐+u(𝑡)𝑎,𝑏,𝑐+1+u(𝑡)𝑎,𝑏,𝑐−1

}︁
−

− 𝑘2 · {6 · u(𝑡)𝑎,𝑏,𝑐}, (11)

where 𝑘2 = 1
𝑚

𝑑2𝑈(𝑥)
𝑑𝑥2

⃒⃒
𝑥=𝑑

, 𝑚 represents the mass

of the atom, 𝑑2𝑈(𝑥)
𝑑𝑥2

⃒⃒
𝑥=𝑑

is the second derivative of
the interatomic potential evaluated at the equilibrium
distance 𝑑.

For vortex-free atomic motion, we introduce a
scalar potential such that

u = ∇𝜙. (12)

Substituting this into (11) shows that 𝜙 satisfies ex-
actly the same discrete Laplacian form:

𝑑2𝜙(𝑡)𝑎,𝑏,𝑐
𝑑𝑡2

= 𝑘2 ·
{︁
𝜙(𝑡)𝑎+1,𝑏,𝑐 + 𝜙(𝑡)𝑎−1,𝑏,𝑐 +

+𝜙(𝑡)𝑎,𝑏+1,𝑐+𝜙(𝑡)𝑎,𝑏−1,𝑐+𝜙(𝑡)𝑎,𝑏,𝑐+1+𝜙(𝑡)𝑎,𝑏,𝑐−1

}︁
−

− 𝑘2 · {6 · 𝜙(𝑡)𝑎,𝑏,𝑐}. (13)

Separable modes and the Cauchy solution Eq. (13)
admits separable solutions of the form

𝜙𝑝,𝑞,𝑟 (𝑡) = 𝑋𝑝−𝑙 (𝑡) · 𝑌𝑞−𝑚 (𝑡) · 𝑍𝑟−𝑛 (𝑡), (14)

representing normal modes oscillating independently
along each lattice axis. This captures purely axis-
aligned interactions within the crystal basis. The full
Cauchy problem, with arbitrary initial displacements
and velocities, was solved in closed form by Bateman
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[3]. The solution embeds the three- dimensional lat-
tice into a higher – dimensional framework, producing
an explicit expression

𝜙𝑙,𝑚,𝑛(𝑡) = 𝐹 (𝑙,𝑚, 𝑛, 𝑡; 𝜙(0), 𝜙′(0)), (15)

where 𝐹 is determined by this formalism. Physically,
this reveals that the discrete lattice structure breaks
the Huygens principle by generating persistent “wave
tails”. The solution of the Cauchy problem for (12),
with given initial data 𝜙𝑙,𝑚,𝑛(0) and 𝜙′

𝑙,𝑚,𝑛(0), can
be written as

𝜙(𝑡)𝑝,𝑞,𝑟 =
∑︁

𝐼𝑝,𝑞,𝑟;𝑙,𝑚,𝑛(𝑡)𝜙(0)𝑙,𝑚,𝑛 +

+
∑︁ 𝑡∫︁

0

𝐼𝑝,𝑞,𝑟;𝑙,𝑚,𝑛(𝑡1)𝜙
′(0)𝑙,𝑚,𝑛𝑑𝑡1, (16)

where the sums run over all lattice sites (𝑙,𝑚, 𝑛) ∈ Z3.
The kernel 𝐼𝑝,𝑞,𝑟;𝑙,𝑚,𝑛(𝑡) admits the explicit factorized
representation

𝐼𝑝,𝑞,𝑟;𝑙,𝑚,𝑛(𝑡) =
1

4𝜋

𝑑

𝑑𝑡
×

×

⎧⎨⎩𝑡
2𝜋∫︁
0

⎡⎣ 𝜋∫︁
0

𝐴(𝑡, 𝜃, 𝛼)𝑝,𝑞,𝑟;𝑙,𝑚,𝑛 sin(𝜃) 𝑑𝜃

⎤⎦𝑑𝛼
⎫⎬⎭, (17)

with

𝐴(𝑡, 𝜃, 𝛼)𝑝,𝑞,𝑟;𝑙,𝑚,𝑛 = 𝐽2 (𝑝−𝑙)(2𝑘𝑡 sin(𝜃)×
× cos(𝛼)) 𝐽2 (𝑞−𝑚)(2𝑘𝑡 sin(𝜃)×
× sin(𝛼)) 𝐽2(𝑟−𝑛)(2𝑘𝑡 cos(𝜃)) (18)

and 𝐽𝜈 denoting the Bessel function of the first kind,
which admits the integral representation

𝐽2 (𝑝−𝑙) (2𝑘𝑡) =

=
1

𝜋

𝜋∫︁
0

cos (2 𝑘 𝑡 sin (𝜑)− 2(𝑝− 𝑙)𝜑) 𝑑𝜑. (19)

Thus, while the separable product form 𝜙𝑝,𝑞,𝑟(𝑡) =
= 𝑋𝑝−𝑙(𝑡)𝑌𝑞−𝑚(𝑡)𝑍𝑟−𝑛(𝑡) represents a particular so-
lution of Eq. (12), expression (13) with kernels (14)–
(16) represents the general solution of the Cauchy
problem, valid for arbitrary initial displacements
and velocities on the infinite simple-cubic, isotropic,
nearest-neighbor harmonic lattice.

The lattice dynamics are most naturally formu-
lated not in the ordinary 3D space, but in a hy-
brid configuration space R3 × Z3, where the continu-
ous component R3 describes displacements of atoms
within the unit cell and the discrete component Z3

indexes the lattice cells. This six-dimensional embed-
ding makes separability along crystallographic axes
explicit into this six-dimensional setting, making sep-
arability along crystallographic axes explicit. In even-
dimensional spaces, however, Huygens principle fails:
wavefronts are always followed by a dispersive oscil-
latory plume, even for initially localized excitations.

4. Focusing Acoustic Waves

The presence of an oscillating tail behind the sound
front can be used to create devices that generate a
self-focusing acoustic wave. Specifically, by generat-
ing acoustic waves in such a sequence that their ex-
tremums converge at a certain point in space simul-
taneously, the amplitude of oscillations at this point
can be increased. Let the wavefront travels from the
point of its generation to a certain point in space over
the time 𝑡0. Then, the extrema from other impulses
follow with a tailored delay of Δ𝑡𝑖, such that they
will reach the same point simultaneously. Therefore,
the potential of waves at a given point in space, as
given by

𝜙(𝑡0, 𝑁)𝑝,𝑞,𝑟,𝑚,𝑟,𝑛 ≡
𝑁∑︁
𝑖=0

𝜙(𝑡0 −Δ𝑡𝑖)𝑝,𝑙,𝑞,𝑚,𝑟,𝑛,

Δ𝑡0 = 0

(20)

can greatly exceed the potential generated by a single
impulse. The delay time before sending the next im-
pulse is dependent on both the coordinates of the im-
pulse generation point and the observation point. To
avoid the unnecessary complexity of the formulas, we
retain the notation of the time delay as presented in
(20), understanding that Δ𝑡𝑖 is a function of the in-
dices 𝑝, 𝑙, 𝑞, 𝑚, 𝑟, 𝑛. For example, let us consider the
result of a sequence of impulses generated by a sin-
gle matrix atom, assuming that an external source of
power acted on the atom. This sequence is selected
such that the amplitude of the atom’s vibration in
the acoustic wave field increases over time at the cho-
sen observation point. The graph in Fig. 1 illustrates
the comparison of the potential when one generated
wave is compared with four consecutive waves gener-
ated according to formula (20).

Lastly, potentials (20) enable the calculation of
wave displacement. For example, if we introduce a
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Fig. 1. The red line represents a change in the wave potential
over time for a single generated wave, while the blue line depicts
a change in the wave potential over time for four generated
waves, as described in formula (20)

Fig. 2. Compares the graphs of waves generated by five con-
secutive impulses of the same initial amplitude with a single
impulse of equivalent amplitude. The smallest distance be-
tween atoms is defined as the unit of length, and the time it
takes for the wave front to pass through the distance between
the two nearest atoms in the dielectric matrix is defined as the
unit of time measurement unit

displacement component along one of the lattice’s ba-
sis vectors, as shown in the equation

𝑣 (𝑡, 𝑎)𝑝,𝑙,𝑞,𝑚,𝑟,𝑛 =
𝜙(𝑡)𝑝+𝑎,𝑙,𝑞,𝑝,𝑙,𝑞 − 𝜙(𝑡)𝑝−𝑎,𝑙,𝑞,𝑝,𝑙,𝑞

2𝑎
≈

≈ 1

2𝑎

𝜕 (𝜙(𝑡)𝑝+𝑎,𝑙,𝑞,𝑝,𝑙,𝑞 − 𝜙(𝑡)𝑝−𝑎,𝑙,𝑞,𝑝,𝑙,𝑞)

𝜕𝑎
+

+ ...
𝑎→0−→ 𝑣 (𝑡, 𝑝, 𝑙, 𝑞)𝑐 , (21)

where 𝑎 denotes the lattice constant and 𝑐 signifies the
continuous approximation applied within the crystal
lattice framework This conceptualization of wave dis-
placement within the lattice is consistent with the
expression of wave displacement in a continuum, as

Fig. 3. The blue line represents a series of five impulses, while
the red line depicts a single impulse with an amplitude that is
five times greater than that of each impulse in the series

demonstrated in this equation, where the variable 𝑝
can be considered a continuous variable. The prin-
cipal difference in determining the displacement of
movement of an atom in the lattice using Eq. (13)
compared to Eq. (21) is that the former accounts for
the displacement of an individual atom, while the
latter considers the difference in the displacement
of neighboring atoms. Imagine a scenario, where all
atoms move at the same displacement. There would
be no wave in this case; instead, there would be a pro-
cess equivalent to transitioning to a coordinate sys-
tem moving with displacement u. In the latter case,
𝑣 (𝑡, 𝑎)𝑝,𝑙,𝑞,𝑚,𝑟,𝑛 = 0, since all atoms share the same
potential and, consequently, the same displacement.

5. One-Dimensional Case

Let the wave travel along the crystalline axis of a
cubic crystal with a primitive basis consisting of a
single atom. Since all atomic planes are shifted in
a co-phased manner, it suffices to consider a one-
dimensional chain of atoms. This model was utilized
by Havelock [2] to study the propagation of a periodic
wave in the crystal and to determine the dispersion
relations. The equation describing the motion of an
atom along the base vector, in a harmonic approxi-
mation with the initial condition of non-zero displace-
ment for that atom, is
𝑑2𝑢𝑝
𝑑𝑡2

= 𝑘2(𝑢𝑝−1 − 2𝑢𝑝 + 𝑢𝑝+1), 𝑝 ≥ 2,

𝑢𝑝=0(0) ̸= 0, 𝑢𝑝>0(0) = 0.
(22)

The solution to this problem is a known function [3]
𝑢(𝑡)𝑝−𝑙 = 𝐽2(𝑝−𝑙)(2𝑘𝑡). (23)
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Similarly to the three-dimensional phenomenon, it is
possible to increase the amplitude of vibrations at a
specific point by generating acoustic waves in such a
sequence that their peaks arrive at the same point in
space simultaneously. Consider this sequence of im-
pulses: the first impulse contributes to the movement
of the impulse front initiated with a delay 𝑡0 −Δ𝑡𝑁 ,
and the subsequent impulses are associated with the
action of the waves following the front. It is essen-
tial that all values at a given point reach their peak
and trough simultaneously. This mechanism inher-
ently leads to an increase in the amplitude of the vi-
bration. The cumulative effect of a set of 𝑁 impulses
results in the amplification of the resultant signal by
nearly 𝑁 -fold

𝐽(𝑡0, 𝑁)𝑝−𝑙 ≡
𝑁∑︁
𝑖=0

𝐽2(𝑝−𝑙) (2𝑘 (𝑡0 −Δ𝑡𝑖)),

Δ𝑡0 = 0.

(24)

Figure 2 shows a comparison of a sequence of 5 im-
pulses, all with the same initial amplitude, to a single
impulse.

Figure 3 differs from the previous one in that the
initial amplitude of a single impulse (represented by
the blue line) is five times greater than the amplitude
of each individual impulse (represented by the red
line) in a series of five impulses.

6. Conclusions

It is shown that such a system can generate longitudi-
nal acoustic waves in a dielectric lattice, whose ampli-
tude can be enhanced at a specific matrix point with-
out increasing the intensity of the laser impulses. This
effect arises from two key factors:

(i) the mathematical violation of Huygens principle
due to the discrete-continuous coupling, and

(ii) the unique physical properties of metal
nanoparticles.

The mathematical factor involves the breakdown
of Huygens principle within a fibered space formed
by the direct product of three-dimensional physical
space and a discrete lattice index space. In this ex-
tended framework, the wavefront is followed by an
oscillatory tail due to the coupling between continu-
ous and discrete coordinates. By carefully timing the
generation of each acoustic impulse so that their ex-
tremums converge both spatially and temporally at
a chosen point, constructive interference can signifi-
cantly amplify the total oscillation amplitude.

The second factor pertains to the unique properties
of metal nanoparticles. Exciting the electronic sub-
system of these particles can result in effects such
as the emission of electrons at temperatures higher
than 8000 K, as well as the radiation of light by hot
electrons at frequencies an order of magnitude higher
than those of the incident laser beam 1.

As demonstrated in the publications [2, 5–8], the
electron-phonon interaction constants of hot electrons
in metal nanoparticles cause a phenomenal decrease
by an order of magnitude compared to bulk metal. As
a result, an electron-phonon system can remain in a
stationary, non-equilibrium state for 103 ∼ 104 hours
without the nanoparticles melting or being destroyed,
provided there is constant external maintenance of
the non-equilibrium state. Without this support, the
thermodynamic equilibrium of the electron-phonon
system is achieved within a dozen femtoseconds.

Recall that the temperature of the electronic gas
can reach thousands of degrees in NP. This situation
is not observed in bulk metal, where the electron-
phonon system achieves equilibrium within 10−10 sec-
ond. That is, it is possible to achieve the desired in-
tensity of acoustic activity at a given crystal point
by irradiating a system of metal nanoparticles with
a sequence of ultra-short laser impulses. These im-
pulses must have sufficient power for generation but
less than the power that would destroy the nanopar-
ticles. Additionally, there needs to be an interval
between impulses to allow for the cooling of the
nanoparticles. This provides a reason to consider a
system of metal nanoparticles as a suitable instru-
ment for generating the sequence of acoustic waves
discussed in this article.

It should be noted that if the exposure time of the
impulse from the hot electronic gas of nanoparticles
on the atoms of the dielectric matrix is much shorter
than the time it takes for the atoms to be displaced by
the integrated range, then Eq. (16) can be expressed
as follows:

𝜙(𝑡)𝑝,𝑞,𝑟 ∼=
∑︁

𝜙′(0)𝑙,𝑚,𝑛

𝑡∫︁
0

𝐼𝑝,𝑞,𝑟;𝑙,𝑚,𝑛(𝑡1)𝑑𝑡1, (25)

and for
𝜙′(𝑡)𝑝,𝑞,𝑟 ∼=

∑︁
𝜙′(0)𝑙,𝑚,𝑛𝐼𝑝,𝑞,𝑟;𝑙,𝑚,𝑛(𝑡) (26)

1 The new mechanism of focusing and enhancing acoustic
waves generated by metal nanoparticles within the crystal
lattice.
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the calculations provided above for the potential dis-
placement are applicable.

The proposed mechanism of focusing and enhanc-
ing acoustic waves provides a novel route to control-
ling the energy localization in structured media. By
simultaneously concentrating and amplifying wave
energy, it enables improved manipulation of wave
propagation for both fundamental studies and applied
technologies.

Note on Addenda and Notation

To enhance both the physical clarity and broader ap-
plicability of our model, we include three supplemen-
tary appendices. These additions provide extended
context and technical depth on topics not fully elab-
orated in the main text. Specifically, they address:

(i) the justification for modelling acoustic waves via
scalar potentials in cubic crystals (Appendix A);

(ii) the semi-discrete formulation of the wave oper-
ator on a 3D lattice (Appendix B);

(iii) the potential for extending the current linear
analysis to weakly nonlinear regimes via perturbative
methods (Appendix C).

From a physical standpoint, a crystal lattice has
a discrete symmetry group, distinct from the contin-
uous symmetry of empty space. Because of this dis-
crete translational symmetry, only shifts by integer
multiples of the lattice basis vectors are permitted, re-
flecting a fundamentally different structure than sys-
tems with continuous symmetry. The transition to a
fibered space that couples three-dimensional physi-
cal coordinates with discrete lattice indices is there-
fore not a heuristic approximation, but a mathemat-
ically consistent and physically motivated step. The
resulting six-dimensional space should not be seen as
an extension of Euclidean space, but rather as a hy-
brid configuration space. This is directly analogous to
classical phase space, which unites position and mo-
mentum coordinates: in the same way, our 6D space
unites spatial coordinates with lattice indices to cap-
ture the full wave dynamics in a crystal.

This approach reflects the same embedding prin-
ciples and reflects the intrinsic nature of wave phe-
nomena in crystalline structures, where the interplay
between continuous and discrete variables fundamen-
tally alters propagation dynamics.

Moreover, the passage of a wavefront through a lat-
tice node is accompanied by a phase jump: the con-

figuration of force interactions changes as new atoms
begin to move. This kind of dynamics requires the ap-
paratus of generalized functions, although that topic
lies beyond the scope of the present work.

APPENDIX A
Negligible Transverse Contribution
in Quasi-Longitudinal Waves

Definition. A quasi-longitudinal wave is an acoustic eigen-
mode in which the polarization vector u is predominantly
aligned with the propagation direction n, though not exactly
parallel due to elastic anisotropy.

In modelling lattice dynamics and acoustic wave propaga-
tion in cubic crystals, we adopt the approximation that the
displacement field u can be derived from a scalar potential 𝜑
via u = ∇𝜑. This implies that the wave motion is essentially
longitudinal – a well-supported approximation based on exper-
imental evidence.

In anisotropic elastic media such as cubic crystals, eigen-
modes of the Christoffel equation are not strictly longitudinal
or transverse except along high-symmetry directions. However,
for quasi-longitudinal modes, the transverse component is con-
sistently small. Supporting evidence includes:

1. Brillouin scattering studies in silicon and germanium
show that quasi-longitudinal modes contain less than 5% trans-
verse polarization in most directions.

2. Phonon imaging in alkali metals (e.g., Li, Na, K) indi-
cates that quasi-longitudinal waves remain predominantly lon-
gitudinal. While quasi-transverse modes can show longitudinal
admixture up to 15%, the reverse is negligible.

3. Theoretical analysis of the Christoffel tensor for cu-
bic symmetry confirms that the polarization vector of quasi-
longitudinal modes remains nearly aligned with k through-
out the Brillouin zone, except at isolated degenerate directions
[9]. Therefore, representing the acoustic displacement field in
terms of a scalar potential is a valid and experimentally justi-
fied simplification for modelling quasi-spherical wavefronts in
cubic lattices.

APPENDIX B

We distinguish between the physical space where acoustic dis-
turbances propagate and the mathematical space where the
problem is formulated. Physically, waves evolve in a three-
dimensional Euclidean lattice. Mathematically, however, the
governing equations for the discrete atomic displacement field
naturally lead to a fibered configuration space – the product
of the physical continuum R3 and a discrete index space Z3

labeling the lattice nodes.
In this extended space, wave behavior is shaped not only by

physical geometry but also by the additional discrete structure.
The emergence of oscillatory “tails” behind the wavefront and
the breakdown of Huygens principle follows directly from this
discrete-continuous coupling, rather than from spatial geome-
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try alone. Our calculations identify the conditions for acoustic-
wave focusing for both spherical and planar waveforms.

Direct experimental verification of these six-dimensional ef-
fects is not yet available, but analogous phenomena appear in
related contexts:

∙ Bessel beams (optical and acoustic), governed by Bessel
functions, exhibit characteristic tails and concentric ring struc-
tures; their self-healing behavior – beam regeneration after ob-
struction – provides clear physical evidence of the underlying
wave structure.

∙ Diffraction phenomena, studied since Lord Rayleigh, like-
wise reveal lattice-like configurations that produce similar tail
effects, even if not explicitly described in terms of Huygens
principle.

Thus, while direct measurements in the modeled six-dimen-
sional setting are lacking, experimental studies of Bessel-func-
tion wave systems strongly support the existence of such fea-
tures. The distinction between physical and extended spaces
corresponds to the formal lifting discussed in Section Continu-
ous vs. Lattice Dynamics, where admissibility constraints and
the representation of the displacement field on R3×Z3 provide
the mathematical foundation for oscillatory tails and Violation
of Huygens principle as natural outcomes of the hybrid lattice
model.

The insights above motivate a more rigorous treatment of
the hybrid lattice–continuum structure. In the following sec-
tions, we formalize the distinction between continuous and dis-
crete dynamics by introducing the Admissibility Condition in
Discrete Lattice Dynamics, detailing the associated admissi-
bility constraints, and analyzing the behavior of the General-
ized Discrete Laplacian. These tools enable the consistent lift-
ing of the displacement field to the indexed configuration space
R3×Z3, establishing the mathematical foundation for the tails,
violation of Huygens principle, and focusing effects discussed
above.

Continuous vs. Lattice Dynamics:
Poisson Formula and Admissibility Constraints

Definition.
Poisson solution to the 3D wave equation

Let 𝑢 : R3 × R → R solve the standard wave equation:

�𝑢(𝑥, 𝑡) :=
𝜕2𝑢

𝜕𝑡2
(𝑥, 𝑡)− 𝑘2Δ𝑢(𝑥, 𝑡) = 0, (B.1)

with initial conditions

𝑢(𝑥, 0) = 𝑓(𝑥),
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ R3, (B.2)

where 𝑓 ∈ 𝐶2(R3) and 𝑔 ∈ 𝐶1(R3). The solution is given by
the Poisson formula:

𝑢(𝑥, 𝑡) =
𝜕

𝜕𝑡

[︃
1

4𝜋𝑐𝑡

∫︁
|𝑦−𝑥|=𝑐𝑡

𝑓(𝑦)𝑑𝑆𝑦

]︃
+

1

4𝜋𝑐𝑡

∫︁
|𝑦−𝑥|=𝑐𝑡

𝑔(𝑦)𝑑𝑆𝑦 ,

(B.3)

where 𝑑𝑆𝑦 denotes surface measure on the sphere of radius 𝑐 · 𝑡
centred at 𝑥.

Minimal regularity

The Poisson formula requires only:
1. 𝑓 ∈ 𝐶2(R3),

2. 𝑔 ∈ 𝐶1(R3).

In contrast, discrete lattice systems impose stricter compat-
ibility constraints on initial data.

Definition.
Admissibility condition in discrete lattice dynamics

Let 𝜙𝑎,𝑏,𝑐(𝑡) denote the displacement field at lattice site
(𝑎, 𝑏, 𝑐) ∈ Z3 and time 𝑡 ∈ R, governed by the discrete wave
equation on a cubic lattice:

�3
lattice𝜙𝑎,𝑏,𝑐(𝑡) = 0, (B.4)

where �3
lattice is the discrete analogue of the d’Alembertian op-

erator, typically defined via finite differences in both space and
time. The initial conditions are given by the field configuration
𝜙𝑎,𝑏,𝑐(0) and its time derivative 𝜕𝑡𝜙𝑎,𝑏,𝑐(0).

To ensure consistency with the discrete evolution, the fol-
lowing admissibility condition must be satisfied:

𝜕2
𝑡 𝜙𝑎,𝑏,𝑐(𝑡)

⃒⃒
𝑡=0

= 𝑘2 ·ΔZ3𝜙𝑎,𝑏,𝑐(0), (B.5)

where 𝑘 is a coupling constant characterizing the interaction
strength between neighboring lattice sites, and ΔZ3 denotes
the discrete Laplacian on the three-dimensional integer lattice.
Explicitly, the discrete Laplacian is defined as:

ΔZ3𝜙𝑎,𝑏,𝑐 =
∑︁

(𝑖, 𝑗, 𝑘) ∈ Z3
‖(𝑖, 𝑗, 𝑘) − (𝑎, 𝑏, 𝑐)‖1 = 1

(𝜙𝑖,𝑗,𝑘 − 𝜙𝑎,𝑏,𝑐), (B.6)

which sums over the six nearest neighbors of the site
(𝑎, 𝑏, 𝑐). Unlike the continuous wave equation, where field am-
plitudes are unrestricted, the discrete lattice model imposes
a natural bound on atomic displacements: the initial dis-
placement at each site must not exceed the interatomic spac-
ing. This constraint reflects the physical limits of atomic mo-
tion and ensures that the model remains within the harmonic
regime of lattice dynamics.

Generalized discrete Laplacian behavior

In many physical settings, lattice interactions extend be-
yond the six nearest neighbors or differ along crystallographic
axes. This motivates replacing the operator (B.6) by a gener-
alized discrete Laplacian

Δ
(𝑤)

Z3 𝜙𝑙,𝑚,𝑛 : =
∑︁

(𝑝,𝑞,𝑟)∈𝒩
𝑤𝑝𝑞𝑟(𝜙𝑙+𝑝,𝑚+𝑞,𝑛+𝑟 −𝜙𝑙,𝑚,𝑛), (B.7)

where 𝒩 ⊂ Z3 ∖ {(0, 0, 0)} is a finite neighborhood of in-
teractions and 𝑤𝑝𝑞𝑟 are real symmetric weights (𝑤𝑝𝑞𝑟 =

= 𝑤−𝑝,−𝑞,−𝑟). The discrete standard Laplacian corresponds to
𝑤±1,0,0 = 𝑤0,±1,0 = 𝑤0,0,±1 = 1 and all other weights zero.

This generalization allows the modeling:
∙ of anisotropic lattices,
∙ long-range forces,
∙ frequency-dependent corrections to the dispersion

relation.
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Remark. Physical Interpretation –
Lifting to a Fibered 6D Space

Discrete lattice wave equations can be naturally lifted to a six-
dimensional fibered space, wherein each lattice node is endowed
with a local continuous displacement field. This framework ex-
hibits a dual character: it simultaneously captures local vi-
brational dynamics and nonlocal interactions dictated by the
lattice topology. Crucially, this lifting is not merely formal –
discrete translational symmetry induces couplings that cannot
be faithfully represented within purely three-dimensional mod-
els. Embedding the problem in this higher-dimensional space
preserves physical fidelity while enabling analytical tractability.

The classical Poisson formula yields a closed-form solu-
tion under minimal regularity assumptions, inherently bypass-
ing the need for additional admissibility conditions. By con-
trast, discrete-lattice systems – particularly those modeled
via numerical schemes – must impose explicit admissibility
constraints to ensure consistency with the discrete evolution
equation. The analytical framework, grounded in Bateman’s
approach, constructs solutions that satisfy these constraints
intrinsically.

Extending the formulation to a six-dimensional configura-
tion space enables the derivation and solution of a discrete-
continuous hybrid equation that accurately reflects lattice sys-
tems coupled to continuous displacement fields. This extension
naturally induces a fibered structure over physical space. A key
consequence of this discrete-continuous interplay is the break-
down of strict Huygens principle, manifesting as oscillatory
wave tails trailing the primary wavefront – a phenomenon that
can be exploited for spatiotemporal wave focusing via construc-
tive interference.

Shift operators via exponential differential form

Proposition
Shift operators

(𝑇𝑥𝑓)(𝑥) = 𝑓(𝑥+ 1) =
(︁
𝑒𝜕𝑥𝑓

)︁
(𝑥), (B.8)

where

𝑒𝜕𝑥 =

∞∑︁
𝑛=0

1

𝑛!
𝜕𝑛
𝑥 (B9)

In several variables, shifts along lattice directions are generated
by:

𝑒±𝜕𝑥 , 𝑒±𝜕𝑦 , 𝑒±𝜕𝑧 . (B10)
2

The discrete Laplacian appearing in (13) can be compactly
written as:

Δ𝑑 = (𝑒𝜕𝑥 + 𝑒−𝜕𝑥 + 𝑒𝜕𝑦 + 𝑒−𝜕𝑦 + 𝑒𝜕𝑧 + 𝑒−𝜕𝑧 − 6), (B.11)

acting on

𝜙𝑎,𝑏,𝑐(𝑡) = 𝜙(𝑥 = 𝑎, 𝑦 = 𝑏, 𝑧 = 𝑐, 𝑡), (B12)

as in the nearest-neighbor lattice model.

Remark. Functional calculus
and generalized shift dynamics

For a smooth function 𝑓 , define 𝑇ℎ := 𝑒ℎ𝜕𝑥 , giving:

(𝑇ℎ 𝑓) (𝑥) = 𝑓 (𝑥+ ℎ) , (B.13)

with ℎ ∈ R for the continuous case and ℎ ∈ Z for discrete
lattice translations.

This allows generalizing dynamics via “functional calculus”
on the generator 𝜕𝑥.

Extensions and applications

1. Fractional shifts.
Introducing the operator 𝑇𝛼 = 𝑒𝛼𝜕𝑥 , with 𝛼 ∈ R, defines

fractional lattice shifts – a generalization of discrete transla-
tions to non-integer displacements.

Physical example:
Within the framework of anomalous transport models,

atoms or excited states can undergo displacements that are
fractional multiples of the lattice vector a, i.e., r = 𝛼a, where
𝛼 ∈ R, 0 < 𝛼 < 1. This enables the description of dynamics
that interpolate between ballistic transport to nearest neigh-
bors and nonlocal Lévy-type jumps. Such an approach cap-
tures intermediate transport regimes that are neither purely
local nor fully nonlocal, and is particularly relevant for sys-
tems with fractal structures or scale-invariant behavior.

2. Discrete dispersion relations.
The Fourier symbol of the 1D discrete Laplacian:̂︁Δ𝑑(𝜉) = 2 cos 𝜉 − 2 (B.14)

and in 3D:̂︁Δ𝑑(𝜉𝑥, 𝜉𝑦 , 𝜉𝑧) = 2(cos 𝜉𝑥 + cos 𝜉𝑦 + cos 𝜉𝑧)− 6. (B.15)

Physical example:
These relations characterize phonon dispersion in a simple

cubic lattice, where the propagation speeds are identical along
all crystallographic axes.

3. Anisotropic operators.
Allowing different coupling strengths:

Δ𝑑,anis = 𝛼𝑥(𝑒
𝜕𝑥 + 𝑒−𝜕𝑥 − 2) + 𝛼𝑦(𝑒

𝜕𝑦 + 𝑒−𝜕𝑦 − 2)+

+𝛼𝑧(𝑒
𝜕𝑧 + 𝑒−𝜕𝑧 − 2), (B.16)

where 𝛼𝑥, 𝛼𝑦 , 𝛼𝑧 reflect anisotropic coupling.
Physical example:
Layered or fibrous crystals where atomic bonds are stronger

in one direction (e.g., graphite planes or optical waveguide
arrays).

4. Integral transforms via shift semigroups.
More general convolution-type evolutions:

(𝐾*𝑓)(𝑥) =

∫︁
R

𝐾(ℎ)(𝑇ℎ𝑓)(𝑥)𝑑ℎ, (B.17)

where 𝐾 encodes spectral or temporal modulation.
Physical example:
In tight-binding electron models, kernels describe effective

hopping amplitudes to non-nearest neighbors, or time-depen-
dent modulation of lattice couplings (Floquet engineering).
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Conclusion of Appendix B

The ascent to a fibered 6D wave space should be understood
as a mathematically justified modeling necessity rather than a
metaphysical claim.

The discrete translational symmetry of the lattice induces
nonlocal couplings that cannot be adequately described within
a purely 3D formulation. By embedding the problem in a
higher-dimensional configuration space, we retain physical fi-
delity while gaining analytical tractability.

Expressing discrete operators through shift–exponential cal-
culus (viewing shifts as exponentials of differential operators)
offers a unified framework to:

∙ connect discrete lattice dynamics with their continuous
differential counterparts,

∙ extend nearest-neighbor models to fractional, anisotropic,
or long-range couplings,

∙ interpret lattice dispersions and generalized propagators
in physically meaningful terms.

Within this framework, the familiar Bessel-function factor-
ization appears merely as one special instance of a broader class
of shift-generated operator dynamics.

APPENDIX C
Linear Approximation
and Perturbative Extensions

The present work is conducted within the framework of lin-
ear elasticity theory, wherein wave propagation is governed by
harmonic response and displacement fields satisfy the princi-
ple of superposition. This approach ensures broad applicability
across a wide range of materials without requiring knowledge
of higher-order elastic constants.

However, nonlinear effects may become relevant in certain
regimes, including:

1. High-amplitude excitation,
2. Strong phonon–phonon interactions,
3. Temperature-induced softening of the lattice.
To account for such phenomena, a material-specific nonlin-

ear elasticity model would be required, incorporating higher-
order stress-strain tensors. A natural approach is to apply per-
turbative methods, treating nonlinear contributions as small
corrections to the linear solution.
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Є.Бiлоцький, П.Томчук

НОВИЙ МЕХАНIЗМ ФОКУСУВАННЯ
ТА ПIДСИЛЕННЯ АКУСТИЧНИХ ХВИЛЬ,
ЩО ГЕНЕРУЮТЬСЯ МЕТАЛЕВИМИ
НАНОЧАСТИНКАМИ В КРИСТАЛIЧНIЙ ҐРАТЦI

Ми обговорюємо можливий механiзм фокусування та пiд-
силення акустичних хвиль, якi генеруються металевими на-
ночастинками, вбудованими у кристалiчну ґратку, пiд дiєю
ультракороткого лазерного збудження. На вiдмiну вiд мо-
делей неперервного середовища, дискретна ґраткова стру-
ктура зумовлює появу осциляцiйних хвостiв хвиль, якi ви-
никають позаду фронту поширення внаслiдок порушення
принципу Гюйгенса у просторах парної розмiрностi. Атом-
на динамiка може розглядатися як еволюцiя у шестивимiр-
ному просторi конфiгурацiй, де неперервна компонента фi-
зичного простору описує внутрiшньокомiрковi змiщення, а
дискретнi iндекси визначають положення елементарних ко-
мiрок. Цей ефект може призводити до локального пiдсиле-
ння амплiтуди поздовжнiх акустичних хвиль у вибраних
вузлах кристалiчної ґратки без збiльшення iнтенсивностi
збуджувального лазерного iмпульсу.

Ключ о в i с л о в а: наночастинки, генерування та фокусу-
вання акустичних хвиль, принцип Гюйгенса.
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